skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Piazolo, Sandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Slow earthquakes, including low-frequency earthquakes, tremor, and geodetically detected slow-slip events, have been widely detected, most commonly at depths of 40–60 km in active subduction zones around the Pacific Ocean Basin. Rocks exhumed from these depths allow us to search for structures that may initiate slow earthquakes. The evidence for high pore-fluid pressures in subduction zones suggests that they may be associated with hydraulic fractures (e.g., veins) and with metamorphic reactions that release or consume water. Loss of continuity and resulting slip at rates exceeding 10−4 m s–1 are required to produce the quasi-seismic signature of low-frequency earthquakes, but the subseismic displacement rates require that the slip rate is slowed by a viscous process, such as low permeability, limiting the rate at which fluid can access a propagating fracture. Displacements during individual low-frequency earthquakes are unlikely to exceed 1 mm, but they need to be more than 0.1 mm and act over an area of ~105 m2 to produce a detectable effective seismic moment. This limits candidate structures to those that have lateral dimensions of ~300 m and move in increments of <1 mm. Possible candidates include arrays of sheeted shear veins showing crack-seal structures; dilational arcs in microfold hinges that form crenulation cleavages; brittle-ductile shear zones in which the viscous component of deformation can limit the displacement rate during slow-slip events; slip surfaces coated with materials, such as chlorite or serpentine, that exhibit a transition from velocity-weakening to velocity-strengthening behavior with increasing slip velocity; and block-in-matrix mélanges. 
    more » « less